Sains Malaysiana 52(12)(2023): 3867-3877
http://doi.org/10.17576/jsm-2023-5212-18
Estimation of Population
Size Based on One-Inflated, Zero-Truncated Count Distribution with Covariate
Information
(Anggaran Saiz Populasi Berdasarkan Taburan Kiraan Satu-Lambung, Sifar-Pemangkasan dengan Maklumat Kovariat)
TITA
JONGSOMJIT* &
RATTANA LERDSUWANSRI
Department
of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Thailand
Diserahkan: 19 Ogos 2023/Diterima: 12 Disember 2023
Abstract
In order
to estimate the unknown size of the population that is difficult or hidden to
enumerate, the capture-recapture method is widely used for this purpose. We
propose the one-inflated, zero-truncated geometric (OIZTG) model to deal with
three important characteristics of some capture–recapture data:
zero-truncation, one-inflation, and observed heterogeneity. The OIZTG model is
generated by two distinct processes, one from a zero-truncated geometric (ZTG)
process, and the other one-count producing process. To explain heterogeneity at
an individual level, the OIZTG model provides a simple way to link the
covariate information. The new estimator was proposed based on the OIZTG
distributions through the modified Horvitz-Thomson approach, and the parameters
of the OIZTG distributions are estimated by using a maximum likelihood
estimator (MLE). With regard to making inferences about the unknown size of the
population, confidence interval estimations are proposed where variance
estimate of population size estimator is achieved by using conditional
expectation technique. All of these are assessed through simulation studies.
The real data sets are provided for understanding the methodologies.
Keywords:
Capture-recapture; geometric regression; observed heterogeneity
Abstrak
Dalam proses untuk menganggarkan saiz populasi yang sukar atau tersembunyi untuk dihitung, kaedah tangkap-tangkap semula digunakan secara meluas untuk tujuan ini. Kami mencadangkan model geometrik satu-lambung, geometrik sifar-pemangkasan (OIZTG) untuk menangani tiga ciri penting bagi beberapa data tangkap-tangkap semula: sifar-pemangkasan, satu-inflasi dan heterogeniti yang diperhatikan.
Model OIZTG dijana oleh dua proses yang berbeza, satu daripada proses geometri terpangkas sifar (ZTG) dan satu lagi proses menghasilkan satu kiraan. Untuk menerangkan heterogeniti pada peringkat individu, model OIZTG menyediakan cara mudah untuk memautkan maklumat kovariat. Penganggar baharu telah dicadangkan berdasarkan taburan OIZTG melalui pendekatan Horvitz-Thomson yang diubah suai dan parameter taburan OIZTG dianggarkan dengan menggunakan penganggar kemungkinan maksimum (MLE). Berkenaan dengan membuat inferens tentang saiz populasi yang tidak diketahui, anggaran selang keyakinan dicadangkan dengan anggaran varians penganggar saiz populasi dicapai dengan menggunakan teknik jangkaan bersyarat. Kesemua ini dinilai melalui kajian simulasi. Set data sebenar disediakan untuk memahami metodologi.
Kata kunci: Kepelbagaian yang diperhatikan; regresi geometri; tangkap-tangkap semula
rujukan
Böhning, D. 2008. A simple variance formula
for population size estimators by conditioning. Statistical Methodology 5(5): 410–423.
Böhning, D. & Friedl,
H. 2021. Population size estimation based upon zero-truncated, one-inflated and
sparse count data. Stat. Methods Appl. 30: 1197-1217.
Böhning, D., Kaskasamkul,
P. & van der Heijden, P.G.M. 2019. A modification
of Chao’s lower bound estimator in the case of one-inflation. Metrika 82: 361-384.
Bunge, J. &
Fitzpatrick, M. 1993. Estimating the number of species: A review. Journal of
the American Statistical Association 88: 364-373.
Chao, A. &
Huggins, R.M. 2006. Four. Modern closed-population capture-recapture models. In Handbook of Capture-Recapture Analysis, edited by Amstrup,
S.C., McDonald, T.L. & Manly, B.F.J. Princeton: Princeton University Press.
pp. 58-87.
Chao, A. 1987.
Estimating the population size for capture-recapture data with unequal
catchability. Biometrics 43(4): 783-791.
Godwin, R.T. 2017.
One-inflation and unobserved heterogeneity in population size estimation. Biometrical
Journal 59(1): 79-93.
Godwin, R.T. & Böhning, D. 2017. Estimation of the population size
by using the one-inflated positive Poisson model. Journal of the Royal
Statistical Society. Series C (Applied Statistics) 66(2): 425-448.
Good, I.J. 1953.
The population frequencies of species and the estimation of population
parameters. Biometrika 40(3-4): 237-264.
Horvitz, D.G.
& Thompson, D.J. 1952. A generalization of sampling without replacement
from a finite universe. Journal of the American Statistical Association 47(260): 663-685.
Lerdsuwansri, R., Sangnawakij, P., Böhning, D., Sansilapin, C., Chaifoo, W., Polonsky, J. & Del Rio Vilas, V. 2022. Sensitivity of contact-tracing for COVID-19 in Thailand: A capture-recapture
application. BMC Infectious Diseases 22: 101.
McDonald, S.,
Hutchinson, S., Schnier, C., McLeod, A. &
Goldberg, D. 2014. Estimating the number of injecting drug users in Scotland’s
HCV-diagnosed population using capture–recapture methods. Epidemiology &
Infection 142(1): 200-207.
Niwitpong, S., Böhning,
D., Van Der Heijden, P.G.M. & Holling,
H. 2013. Capture–recapture estimation based upon the geometric distribution
allowing for heterogeneity. Metrika 76(4):
495-519.
Panyalert, K. & Lanamtaeng,
K. 2020. Factors influencing drug rehabilitation attendance at Thunyarak Chiangmai Hospital for
substance addiction. Proceedings of the 18th Scientific and Technological
Conference, 440-451. Maejo University, Thailand,
28 February 2020.
Tajuddin, R.R.M., Ismail, N. & Ibrahim,
K. 2022. Estimating population size of criminals: A new Horvitz–Thompson
estimator under one-inflated positive Poisson-Lindley Model. Crime &
Delinquency 68(6-7): 1004-1034.
Zelterman, D. 1988. Robust estimation in
truncated discrete distributions with application to capture-recapture
experiments. Journal of Statistical Planning and Inference 18(2): 225-237.
*Pengarang untuk surat-menyurat; email: tita.jong@dome.tu.ac.th
|